Search results
Results from the WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3] The predecessor of NumPy, Numeric, was originally created by Jim Hugunin with ...
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.
In array languages, operations are generalized to apply to both scalars and arrays. Thus, a+b expresses the sum of two scalars if a and b are scalars, or the sum of two arrays if they are arrays. An array language simplifies programming but possibly at a cost known as the abstraction penalty.
[9]: 97 Unlike in NumPy, each data point has an associated label. The collection of these labels is called an index. The collection of these labels is called an index. [ 4 ] : 112 Series can be used arithmetically, as in the statement series_3 = series_1 + series_2 : this will align data points with corresponding index values in series_1 and ...
Python [24] [25] with well-known scientific computing packages: NumPy, SymPy and SciPy. [26] [27] [28] R is a widely used system with a focus on data manipulation and statistics which implements the S language. [29] Many add-on packages are available (free software, GNU GPL license). SAS, [30] a system of software products for statistics.
This list is incomplete; you can help by adding missing items. (February 2011) ... Numpy: PyPI: C, C++, Fortran, many others:
JAX is a machine learning framework for transforming numerical functions. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).