Search results
Results from the WOW.Com Content Network
The essential service water system (ESWS) circulates the water that cools the plant's heat exchangers and other components before dissipating the heat into the environment. Because this includes cooling the systems that remove decay heat from both the primary system and the spent fuel rod cooling ponds, the ESWS is a safety-critical system. [7]
The capsule (Swedish version). KBS-3 (an abbreviation of kärnbränslesäkerhet, nuclear fuel safety) is a technology for disposal of high-level radioactive waste developed in Sweden by Svensk Kärnbränslehantering AB (SKB) by appointment from Statens Strålskyddsinstitut (the government's radiation protection agency).
(a) The Secretary, in cooperation with the Nuclear Regulatory Commission, shall initiate a study as to the sufficiency of efforts in the United States to provide specially trained professionals to operate the controls of nuclear power plants and other facilities in the back-end of the nuclear fuel cycle. In carrying out the study, the Secretary ...
The Reactor Protection System (RPS) is a system, computerized in later BWR models, that is designed to automatically, rapidly, and completely shut down and make safe the Nuclear Steam Supply System (NSSS – the reactor pressure vessel, pumps, and water/steam piping within the containment) if some event occurs that could result in the reactor entering an unsafe operating condition.
A reactor protection system (RPS) is a set of nuclear safety and security components in a nuclear power plant designed to safely shut down the reactor and prevent the release of radioactive materials. The system can "trip" automatically (initiating a scram), or it can be tripped by the operators. Trips occur when the parameters meet or exceed ...
RELAP5-3D is an outgrowth of the one-dimensional RELAP5/MOD3 code developed at Idaho National Laboratory (INL) for the U.S. Nuclear Regulatory Commission (NRC). The U.S. Department of Energy (DOE) began sponsoring additional RELAP5 development in the early 1980s to meet its own reactor safety assessment needs.
The nuclear industry began to promote a nuclear renaissance suggesting that Gen III+ designs should solve three key problems: safety, cost and buildability. Construction costs of US$1,000/kW were forecast, a level that would make nuclear competitive with gas, and construction times of four years or less were expected.
In case of an accident, the ESBWR can remain in a safe, stable state for 72 hours without any operator action or even electrical power. ESBWR safety systems are designed to operate normally in the event of station blackout, which prevented proper functioning of the emergency core cooling systems at the Fukushima Daiichi Nuclear Power Plant ...