enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cascading classifiers - Wikipedia

    en.wikipedia.org/wiki/Cascading_classifiers

    Cascade classifiers are available in OpenCV, with pre-trained cascades for frontal faces and upper body. Training a new cascade in OpenCV is also possible with either haar_training or train_cascades methods. This can be used for rapid object detection of more specific targets, including non-human objects with Haar-like features. The process ...

  3. Viola–Jones object detection framework - Wikipedia

    en.wikipedia.org/wiki/Viola–Jones_object...

    Viola–Jones is essentially a boosted feature learning algorithm, trained by running a modified AdaBoost algorithm on Haar feature classifiers to find a sequence of classifiers ,,...,. Haar feature classifiers are crude, but allows very fast computation, and the modified AdaBoost constructs a strong classifier out of many weak ones.

  4. Haar-like feature - Wikipedia

    en.wikipedia.org/wiki/Haar-like_feature

    In the Viola–Jones object detection framework, the Haar-like features are therefore organized in something called a classifier cascade to form a strong learner or classifier. The key advantage of a Haar-like feature over most other features is its calculation speed. Due to the use of integral images, a Haar-like feature of any size can be ...

  5. Local binary patterns - Wikipedia

    en.wikipedia.org/wiki/Local_binary_patterns

    OpenCV's Cascade Classifiers support LBPs as of version 2. VLFeat, an open source computer vision library in C (with bindings to multiple languages including MATLAB) has an implementation. LBPLibrary is a collection of eleven Local Binary Patterns (LBP) algorithms developed for background subtraction problem. The algorithms were implemented in ...

  6. Histogram of oriented gradients - Wikipedia

    en.wikipedia.org/wiki/Histogram_of_oriented...

    The generalized Haar wavelets represent the next highest performing approach: they produced roughly a 0.01 miss rate at a 10 −4 false positive rate on the MIT set, and roughly a 0.3 miss rate on the INRIA set. The PCA-SIFT descriptors and shape context descriptors both performed fairly poorly on both data sets.

  7. Outline of object recognition - Wikipedia

    en.wikipedia.org/wiki/Outline_of_object_recognition

    Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated.

  8. AdaBoost - Wikipedia

    en.wikipedia.org/wiki/AdaBoost

    AdaBoost refers to a particular method of training a boosted classifier. A boosted classifier is a classifier of the form = = where each is a weak learner that takes an object as input and returns a value indicating the class of the object. For example, in the two-class problem, the sign of the weak learner's output identifies the predicted ...

  9. CIFAR-10 - Wikipedia

    en.wikipedia.org/wiki/CIFAR-10

    The CIFAR-10 dataset (Canadian Institute For Advanced Research) is a collection of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely used datasets for machine learning research.