Search results
Results from the WOW.Com Content Network
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.
The Rocchio algorithm is based on a method of relevance feedback found in information retrieval systems which stemmed from the SMART Information Retrieval System developed between 1960 and 1964. Like many other retrieval systems, the Rocchio algorithm was developed using the vector space model .
The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.
Ordered pairs of scalars are sometimes called 2-dimensional vectors. (Technically, this is an abuse of terminology since an ordered pair need not be an element of a vector space.) The entries of an ordered pair can be other ordered pairs, enabling the recursive definition of ordered n-tuples (ordered lists of n objects).
Thus, each list can be generated in sorted form in time (/). Given the two sorted lists, the algorithm can check if an element of the first array and an element of the second array sum up to T in time O ( 2 n / 2 ) {\displaystyle O(2^{n/2})} .
The dope vector is a complete handle for the array, and is a convenient way to pass arrays as arguments to procedures. Many useful array slicing operations (such as selecting a sub-array, swapping indices, or reversing the direction of the indices) can be performed very efficiently by manipulating the dope vector.
Linear probing is a component of open addressing schemes for using a hash table to solve the dictionary problem.In the dictionary problem, a data structure should maintain a collection of key–value pairs subject to operations that insert or delete pairs from the collection or that search for the value associated with a given key.
where is the kernel function (usually Gaussian), are the variances of the prior on the weight vector (,), and , …, are the input vectors of the training set. [ 4 ] Compared to that of support vector machines (SVM), the Bayesian formulation of the RVM avoids the set of free parameters of the SVM (that usually require cross-validation-based ...