Search results
Results from the WOW.Com Content Network
String theory is a theoretical framework that attempts to address these questions. The starting point for string theory is the idea that the point-like particles of particle physics can also be modeled as one-dimensional objects called strings. String theory describes how strings propagate through space and interact with each other.
The starting point for string theory is the idea that the point-like particles of quantum field theory can also be modeled as one-dimensional objects called strings. The interaction of strings is most straightforwardly defined by generalizing the perturbation theory used in ordinary quantum field theory.
In string theory, the strings may be open (forming a segment with two endpoints) or closed (forming a loop like a circle) and may have other special properties. [1] Prior to 1995, there were five known versions of string theory incorporating the idea of supersymmetry (these five are known as superstring theories) and two versions without supersymmetry known as bosonic string theories, which ...
The democratic formulation of 10-dimensional supergravities can be found in New Formulations of D=10 Supersymmetry and D8-O8 Domain Walls by Eric Bergshoeff, Renata Kallosh, Tomás Ortín, Diederik Roest and Antoine Van Proeyen. It includes many details absent in Townsend's original paper, but restricts attention to a topologically trivial ...
String theory is a branch of theoretical physics that attempts to build a theory of quantum gravity using one-dimensional strings rather than zero-dimensional point particles as fundamental building blocks. The name string theory is somewhat of a misnomer since the modern theory also includes higher dimensional objects known as branes
At low energies, type IIB string theory is described by type IIB supergravity in ten dimensions which is a chiral theory (left–right asymmetric) with (2,0) d=10 supersymmetry; the fact that the anomalies in this theory cancel is therefore nontrivial.
Each theory of quantum gravity uses the term "quantum geometry" in a slightly different fashion. String theory, a leading candidate for a quantum theory of gravity, uses it to describe exotic phenomena such as T-duality and other geometric dualities, mirror symmetry, topology-changing transitions [clarification needed], minimal possible distance scale, and other effects that challenge intuition.
Bosonic string theory; Superstring theory. Type I string; Type II string. Type IIA string theory; Type IIB string theory; Heterotic string; N=2 superstring; M-theory. Matrix theory; Introduction to M-theory; F-theory; String field theory; Matrix string theory; Nonlinear sigma model; Tachyon condensation; RNS formalism; String theory landscape ...