Search results
Results from the WOW.Com Content Network
The corresponding angles as well as the corresponding sides are defined as appearing in the same sequence, so for example if in a polygon with the side sequence abcde and another with the corresponding side sequence vwxyz we have vertex angle a appearing between sides a and b then its corresponding vertex angle v must appear between sides v and w.
The converse of the hinge theorem is also true: If the two sides of one triangle are congruent to two sides of another triangle, and the third side of the first triangle is greater than the third side of the second triangle, then the included angle of the first triangle is larger than the included angle of the second triangle.
Corresponding angles are the four pairs of angles that: have distinct vertex points, lie on the same side of the transversal and; one angle is interior and the other is exterior. Two lines are parallel if and only if the two angles of any pair of corresponding angles of any transversal are congruent (equal in measure).
In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...
AAS (angle-angle-side): If two pairs of angles of two triangles are equal in measurement, and a pair of corresponding non-included sides are equal in length, then the triangles are congruent. AAS is equivalent to an ASA condition, by the fact that if any two angles are given, so is the third angle, since their sum should be 180°.
The corresponding angles formed by a transversal property, used by W. D. Cooley in his 1860 text, The Elements of Geometry, simplified and explained requires a proof of the fact that if one transversal meets a pair of lines in congruent corresponding angles then all transversals must do so. Again, a new axiom is needed to justify this statement.
It can be shown that two triangles having congruent angles (equiangular triangles) are similar, that is, the corresponding sides can be proved to be proportional. This is known as the AAA similarity theorem. [2] Note that the "AAA" is a mnemonic: each one of the three A's refers to an "angle".
In the mathematical theory of automorphic forms, a converse theorem gives sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. More generally a converse theorem states that a representation of an algebraic group over the adeles is automorphic whenever the L-functions of various twists of it are well-behaved.