Search results
Results from the WOW.Com Content Network
The proof of the Riemann hypothesis for varieties over finite fields by Deligne (1974) is possibly the single strongest theoretical reason in favor of the Riemann hypothesis. This provides some evidence for the more general conjecture that all zeta functions associated with automorphic forms satisfy a Riemann hypothesis, which includes the ...
However, Grothendieck's standard conjectures remain open (except for the hard Lefschetz theorem, which was proved by Deligne by extending his work on the Weil conjectures), and the analogue of the Riemann hypothesis was proved by Deligne , using the étale cohomology theory but circumventing the use of standard conjectures by an ingenious argument.
Deligne's contribution was to supply the estimate of the eigenvalues of the Frobenius endomorphism, considered the geometric analogue of the Riemann hypothesis. It also led to a proof of the Lefschetz hyperplane theorem and the old and new estimates of the classical exponential sums, among other applications.
The Riemann hypothesis is one of the most important conjectures in mathematics.It is a statement about the zeros of the Riemann zeta function.Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function.
Moreover, as he pointed out, the standard conjectures also imply the hardest part of the Weil conjectures, namely the "Riemann hypothesis" conjecture that remained open at the end of the 1960s and was proved later by Pierre Deligne; for details on the link between Weil and standard conjectures, see Kleiman (1968).
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry.
Hasse (1936) discovered supersingular elliptic curves during his work on the Riemann hypothesis for elliptic curves by observing that positive characteristic elliptic curves could have endomorphism rings of unusually large rank 4, and Deuring (1941) developed their basic theory.
The last two parts were quite consciously modeled on the Riemann zeta function and Riemann hypothesis. The rationality was proved by Dwork (1960), the functional equation by Grothendieck (1965), and the analogue of the Riemann hypothesis was proved by Deligne (1974).