enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)

  3. Motion ratio - Wikipedia

    en.wikipedia.org/wiki/Motion_ratio

    The force in the spring is (roughly) the vertical force at the contact patch divided by the motion ratio, and the spring rate is the wheel rate divided by the motion ratio squared. I R = S p r i n g D i s p l a c e m e n t W h e e l D i s p l a c e m e n t . {\displaystyle IR={\frac {SpringDisplacement}{WheelDisplacement}}.}

  4. p-y method - Wikipedia

    en.wikipedia.org/wiki/P-y_method

    In geotechnical civil engineering, the p–y is a method of analyzing the ability of deep foundations to resist loads applied in the lateral direction. This method uses the finite difference method and p-y graphs to find a solution.

  5. Flexibility method - Wikipedia

    en.wikipedia.org/wiki/Flexibility_method

    For example, consider a spring that has Q and q as, respectively, its force and deformation: The spring stiffness relation is Q = k q where k is the spring stiffness. Its flexibility relation is q = f Q, where f is the spring flexibility. Hence, f = 1/k. A typical member flexibility relation has the following general form:

  6. Effective mass (spring–mass system) - Wikipedia

    en.wikipedia.org/wiki/Effective_mass_(spring...

    The effective mass of the spring in a spring-mass system when using a heavy spring (non-ideal) of uniform linear density is of the mass of the spring and is independent of the direction of the spring-mass system (i.e., horizontal, vertical, and oblique systems all have the same effective mass). This is because external acceleration does not ...

  7. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Belleville washer - Wikipedia

    en.wikipedia.org/wiki/Belleville_washer

    The load applied to the reduced-thickness spring to obtain a deflection equal to the 75% of the free height (of an unreduced spring) must be the same as for an unreduced spring. As the overall height is not reduced, springs with reduced thickness inevitably have an increased flank angle and a greater cone height than springs of the same nominal ...

  1. Related searches spring calculation formula pdf format printable free template for sugar jar

    equivalent spring constantequation for parallel spring
    series and parallel springs formula