Search results
Results from the WOW.Com Content Network
Flux (also known as FLUX.1) is a text-to-image model developed by Black Forest Labs, based in Freiburg im Breisgau, Germany. Black Forest Labs were founded by former employees of Stability AI. As with other text-to-image models, Flux generates images from natural language descriptions, called prompts.
An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.
Stable Diffusion is a deep learning, text-to-image model released in 2022 based on diffusion techniques. The generative artificial intelligence technology is the premier product of Stability AI and is considered to be a part of the ongoing artificial intelligence boom.
DALL-E 2 is a 3.5-billion cascaded diffusion model that generates images from text by "inverting the CLIP image encoder", the technique which they termed "unCLIP". The unCLIP method contains 4 models: a CLIP image encoder, a CLIP text encoder, an image decoder, and a "prior" model (which can be a diffusion model, or an autoregressive model).
Roblox occasionally hosts real-life and virtual events. They have in the past hosted events such as BloxCon, which was a convention for ordinary players on the platform. [46] Roblox operates annual Easter egg hunts [52] and also hosts an annual event called the "Bloxy Awards", an awards ceremony that also functions as a fundraiser. The 2020 ...
Midjourney is a generative artificial intelligence program and service created and hosted by the San Francisco-based independent research lab Midjourney, Inc. Midjourney generates images from natural language descriptions, called prompts, similar to OpenAI's DALL-E and Stability AI's Stable Diffusion.
The generator is decomposed into a pyramid of generators =, with the lowest one generating the image () at the lowest resolution, then the generated image is scaled up to (()), and fed to the next level to generate an image (+ (())) at a higher resolution, and so on. The discriminator is decomposed into a pyramid as well.
Progressive GAN [9] is a method for training GAN for large-scale image generation stably, by growing a GAN generator from small to large scale in a pyramidal fashion. Like SinGAN, it decomposes the generator as G = G 1 ∘ G 2 ∘ ⋯ ∘ G N {\displaystyle G=G_{1}\circ G_{2}\circ \cdots \circ G_{N}} , and the discriminator as D = D N ∘ D N ...