Search results
Results from the WOW.Com Content Network
Coherent Raman scattering (CRS) microscopy is a multi-photon microscopy technique based on Raman-active vibrational modes of molecules. The two major techniques in CRS microscopy are stimulated Raman scattering (SRS) and coherent anti-Stokes Raman scattering (CARS). SRS and CARS were theoretically predicted and experimentally realized in the 1960s.
Stimulated Raman spectroscopy, also referred to as stimulated Raman scattering (SRS), is a form of spectroscopy employed in physics, chemistry, biology, and other fields. . The basic mechanism resembles that of spontaneous Raman spectroscopy: a pump photon, of the angular frequency , which is scattered by a molecule has some small probability of inducing some vibrational (or rotational ...
Confocal Raman imaging microscope Raman microscope. The Raman microscope is a laser-based microscopic device used to perform Raman spectroscopy. [1] The term MOLE (molecular optics laser examiner) is used to refer to the Raman-based microprobe. [1] The technique used is named after C. V. Raman, who discovered the scattering properties in ...
Although the inelastic scattering of light was predicted by Adolf Smekal in 1923, [3] it was not observed in practice until 1928. The Raman effect was named after one of its discoverers, the Indian scientist C. V. Raman, who observed the effect in organic liquids in 1928 together with K. S. Krishnan, and independently by Grigory Landsberg and Leonid Mandelstam in inorganic crystals. [1]
Coherent anti-Stokes Raman spectroscopy, also called Coherent anti-Stokes Raman scattering spectroscopy (CARS), is a form of spectroscopy used primarily in chemistry, physics and related fields. It is sensitive to the same vibrational signatures of molecules as seen in Raman spectroscopy , typically the nuclear vibrations of chemical bonds.
Tip-enhanced Raman spectroscopy (TERS) is a variant of surface-enhanced Raman spectroscopy (SERS) [1] that combines scanning probe microscopy with Raman spectroscopy. High spatial resolution chemical imaging is possible via TERS, [2] with routine demonstrations of nanometer spatial resolution under ambient laboratory conditions, [3] or better [4] at ultralow temperatures and high pressure.
In addition to his research on bond-selective chemical imaging, Cheng also made advancements in the field of high-resolution and high-speed transient absorption (TA) microscopy. In 2013, his team pioneered far-field super-resolution transient absorption imaging, breaking the conventional diffraction limit by achieving a spatial resolution of ...
Commercially available laboratory-based chemical imaging systems emerged in the early 1990s (ref. 1-5). In addition to economic factors, such as the need for sophisticated electronics and extremely high-end computers, a significant barrier to commercialization of infrared imaging was that the focal plane array (FPA) needed to read IR images were not readily available as commercial items.