enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Well-order - Wikipedia

    en.wikipedia.org/wiki/Well-order

    In mathematics, a well-order (or well-ordering or well-order relation) on a set S is a total ordering on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the ordering is then called a well-ordered set.

  3. Well-ordering principle - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_principle

    Considering the natural numbers as a subset of the real numbers, and assuming that we know already that the real numbers are complete (again, either as an axiom or a theorem about the real number system), i.e., every bounded (from below) set has an infimum, then also every set of natural numbers has an infimum, say .

  4. Well-ordering theorem - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_theorem

    In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are ...

  5. Von Neumann cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_cardinal...

    That such an ordinal exists and is unique is guaranteed by the fact that U is well-orderable and that the class of ordinals is well-ordered, using the axiom of replacement. With the full axiom of choice , every set is well-orderable , so every set has a cardinal; we order the cardinals using the inherited ordering from the ordinal numbers.

  6. Order type - Wikipedia

    en.wikipedia.org/wiki/Order_type

    Every well-ordered set is order-equivalent to exactly one ordinal number, by definition. The ordinal numbers are taken to be the canonical representatives of their classes, and so the order type of a well-ordered set is usually identified with the corresponding ordinal. Order types thus often take the form of arithmetic expressions of ordinals.

  7. Ordinal number - Wikipedia

    en.wikipedia.org/wiki/Ordinal_number

    The original definition of ordinal numbers, found for example in the Principia Mathematica, defines the order type of a well-ordering as the set of all well-orderings similar (order-isomorphic) to that well-ordering: in other words, an ordinal number is genuinely an equivalence class of well-ordered sets.

  8. Ordinal arithmetic - Wikipedia

    en.wikipedia.org/wiki/Ordinal_arithmetic

    This is a well-ordering and hence gives an ordinal number. The definition of exponentiation can also be given by transfinite recursion on the exponent β. When the exponent β = 0, ordinary exponentiation gives α 0 = 1 for any α. For β > 0, the value of α β is the smallest ordinal greater than or equal to α δ · α for all δ < β ...

  9. Countable set - Wikipedia

    en.wikipedia.org/wiki/Countable_set

    The usual order of rational numbers (Cannot be explicitly written as an ordered list!) In both examples of well orders here, any subset has a least element; and in both examples of non-well orders, some subsets do not have a least element. This is the key definition that determines whether a total order is also a well order.