Search results
Results from the WOW.Com Content Network
Two examples of frequently used methods that have problems correctly aligning proteins related by circular permutation are dynamic programming and many hidden Markov models. [34] As an alternative to these, a number of algorithms are built on top of non-linear approaches and are able to detect topology -independent similarities, or employ ...
Enumerations of specific permutation classes; Factorial. Falling factorial; Permutation matrix. Generalized permutation matrix; Inversion (discrete mathematics) Major index; Ménage problem; Permutation graph; Permutation pattern; Permutation polynomial; Permutohedron; Rencontres numbers; Robinson–Schensted correspondence; Sum of permutations ...
A cyclic permutation consisting of a single 8-cycle. There is not widespread consensus about the precise definition of a cyclic permutation. Some authors define a permutation σ of a set X to be cyclic if "successive application would take each object of the permuted set successively through the positions of all the other objects", [1] or, equivalently, if its representation in cycle notation ...
There are a few equivalent ways to state this definition. A cyclic order on X is the same as a permutation that makes all of X into a single cycle, which is a special type of permutation - a circular permutation. Alternatively, a cycle with n elements is also a Z n-torsor: a set with a free transitive action by a finite cyclic group. [1]
Skew and direct sums of permutations; Steinhaus–Johnson–Trotter algorithm; Stirling number; Stirling numbers of the first kind; Stirling numbers of the second kind; Stirling permutation; Substitution–permutation network; Superpermutation
1. Carmichael's definition of circular permutation (A permutation such as ... is called a circular permutation or a cyclic permutation. [and later] A circular permutation on two letters, such as (ab), is called a transposition. [and his first theorem is] Any given permutation is a product of circular permutations no two of which have a letter ...
(n factorial) is the number of n-permutations; !n (n subfactorial) is the number of derangements – n-permutations where all of the n elements change their initial places. In combinatorial mathematics , a derangement is a permutation of the elements of a set in which no element appears in its original position.
The ! permutations of the numbers from 1 to may be placed in one-to-one correspondence with the ! numbers from 0 to ! by pairing each permutation with the sequence of numbers that count the number of positions in the permutation that are to the right of value and that contain a value less than (that is, the number of inversions for which is the ...