Search results
Results from the WOW.Com Content Network
Record linkage (also known as data matching, data linkage, entity resolution, and many other terms) is the task of finding records in a data set that refer to the same entity across different data sources (e.g., data files, books, websites, and databases).
Subsets of data can be selected by column name, index, or Boolean expressions. For example, df[df['col1'] > 5] will return all rows in the DataFrame df for which the value of the column col1 exceeds 5. [4]: 126–128 Data can be grouped together by a column value, as in df['col1'].groupby(df['col2']), or by a function which is applied to the index.
Names such as LAST_UPDATE, LAST_MODIFIED, etc. are common. Any row in any table that has a timestamp in that column that is more recent than the last time data was captured is considered to have changed. Timestamps on rows are also frequently used for opened locking so this column is often available.
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
A database relation (e.g. a database table) is said to meet third normal form standards if all the attributes (e.g. database columns) are functionally dependent on solely a key, except the case of functional dependency whose right hand side is a prime attribute (an attribute which is strictly included into some key).
In computer science and statistics, the Jaro–Winkler similarity is a string metric measuring an edit distance between two sequences. It is a variant of the Jaro distance metric [1] (1989, Matthew A. Jaro) proposed in 1990 by William E. Winkler.
In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.
Presented here are two algorithms: the first, [8] simpler one, computes what is known as the optimal string alignment distance or restricted edit distance, [7] while the second one [9] computes the Damerau–Levenshtein distance with adjacent transpositions. Adding transpositions adds significant complexity.