Search results
Results from the WOW.Com Content Network
However, resonance can also be detrimental, leading to excessive vibrations or even structural failure in some cases. [3] All systems, including molecular systems and particles, tend to vibrate at a natural frequency depending upon their structure; this frequency is known as a resonant frequency or resonance frequency.
In effect, it is filtering out all frequencies other than its resonance. Acoustic resonance is an important consideration for instrument builders, as most acoustic instruments use resonators, such as the strings and body of a violin, the length of tube in a flute, and the shape of a drum membrane. Acoustic resonance is also important for hearing.
Mechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration (its resonance frequency or resonant frequency) closer than it does other frequencies. It may cause violent swaying motions and potentially catastrophic failure in ...
This effect is the peak natural resonance frequency of the circuit and in general is not exactly the same as the driven resonance frequency, although the two will usually be quite close to each other. Various terms are used by different authors to distinguish the two, but resonance frequency unqualified usually means the driven resonance frequency.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
Thus, the lifetime of a particle is the direct inverse of the particle's resonance width. For example, the charged pion has the second-longest lifetime of any meson, at 2.6033 × 10 −8 s. [2] Therefore, its resonance width is very small, about 2.528 × 10 −8 eV or about 6.11 MHz. Pions are generally not considered as "resonances".
The sound generator is turned on and the piston is adjusted until the sound from the tube suddenly gets much louder. This indicates that the tube is at resonance. This means the length of the round-trip path of the sound waves, from one end of the tube to the other and back again, is a multiple of the wavelength λ of the sound waves. Therefore ...