Search results
Results from the WOW.Com Content Network
For a reversible reaction, the equilibrium constant can be measured at a variety of temperatures. This data can be plotted on a graph with ln K eq on the y-axis and 1 / T on the x axis. The data should have a linear relationship, the equation for which can be found by fitting the data using the linear form of the Van 't Hoff equation
The value of the equilibrium constant for the formation of a 1:1 complex, such as a host-guest species, may be calculated with a dedicated spreadsheet application, Bindfit: [4] In this case step 2 can be performed with a non-iterative procedure and the pre-programmed routine Solver can be used for step 3.
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change.
The reaction quotient plays a crucial role in understanding the direction and extent of a chemical reaction's progress towards equilibrium: Equilibrium condition: At equilibrium, the reaction quotient (Q) is equal to the equilibrium constant (K) for the reaction. This condition is represented as Q = K, indicating that the forward and reverse ...
Equilibrium chemistry is concerned with systems in chemical equilibrium.The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero.
The Hammett equation predicts the equilibrium constant or reaction rate of a reaction from a substituent constant and a reaction type constant. The Edwards equation relates the nucleophilic power to polarisability and basicity. The Marcus equation is an example of a quadratic free-energy relationship (QFER). [citation needed]
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
relating the equilibrium constant, , for a given equilibrium reaction with substituent R and the reference constant when R is a hydrogen atom to the substituent constant σ which depends only on the specific substituent R and the reaction rate constant ρ which depends only on the type of reaction but not on the substituent used.