Search results
Results from the WOW.Com Content Network
In physics, a mass balance, also called a material balance, is an application of conservation of mass [1] to the analysis of physical systems. By accounting for material entering and leaving a system, mass flows can be identified which might have been unknown, or difficult to measure without this technique.
The non-linearity of the material derivative in balance equations in general, and the complexities of Cauchy's momentum equation and Navier-Stokes equation makes the basic equations in classical mechanics exposed to establishing of simpler approximations. Some examples of governing differential equations in classical continuum mechanics are
This is an energy balance which defines the position of the moving interface. Note that this evolving boundary is an unknown (hyper-)surface; hence, Stefan problems are examples of free boundary problems. Analogous problems occur, for example, in the study of porous media flow, mathematical finance and crystal growth from monomer solutions. [1]
The compressible Euler equations consist of equations for conservation of mass, balance of momentum, and balance of energy, together with a suitable constitutive equation for the specific energy density of the fluid. Historically, only the equations of conservation of mass and balance of momentum were derived by Euler.
This toy uses the principles of center of mass to keep balance when sitting on a finger. In physics, the center of mass of a distribution of mass in space (sometimes referred to as the barycenter or balance point) is the unique point at any given time where the weighted relative position of the distributed mass sums to zero.
Stoichiometry is not only used to balance chemical equations but also used in conversions, i.e., converting from grams to moles using molar mass as the conversion factor, or from grams to milliliters using density. For example, to find the amount of NaCl (sodium chloride) in 2.00 g, one would do the following:
In chemistry, the lever rule is a formula used to determine the mole fraction (x i) or the mass fraction (w i) of each phase of a binary equilibrium phase diagram.It can be used to determine the fraction of liquid and solid phases for a given binary composition and temperature that is between the liquidus and solidus line.
For example, capillarity of internal layers in fluids appears for flow with high gradients. [27] For large Knudsen number of the problem, the Boltzmann equation may be a suitable replacement. [28] Failing that, one may have to resort to molecular dynamics or various hybrid methods. [29] Another limitation is simply the complicated nature of the ...