enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    However, angular speed must be in radians per unit of time, by the assumed direct relationship between linear speed and angular speed at the beginning of the derivation. If the rotational speed is measured in revolutions per unit of time, the linear speed and distance are increased proportionately by 2 π in the above derivation to give:

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Design standards for high-speed rail vary from 0.2 m/s 3 to 0.6 m/s 3. [4] Track transition curves limit the jerk when transitioning from a straight line to a curve, or vice versa. Recall that in constant-speed motion along an arc, acceleration is zero in the tangential direction and nonzero in the inward normal direction.

  5. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Absorbed dose received per unit of time Gy/s L 2 T −3: Action: S: Momentum of particle multiplied by distance travelled J/Hz L 2 M T −1: scalar Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar Area density: ρ A: Mass per unit area kg ...

  6. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The amount of torque needed to cause any given angular acceleration (the rate of change in angular velocity) is proportional to the moment of inertia of the body. Moments of inertia may be expressed in units of kilogram metre squared (kg·m 2) in SI units and pound-foot-second squared (lbf·ft·s 2) in imperial or US units.

  7. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Acceleration has the dimensions of velocity (L/T) divided by time, i.e. L T −2. The SI unit of acceleration is the metre per second squared (m s −2); or "metre per second per second", as the velocity in metres per second changes by the acceleration value, every second.

  8. Angular velocity - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity

    In physics, angular velocity (symbol ω or , the lowercase Greek letter omega), also known as the angular frequency vector, [1] is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction.

  9. Rotational energy - Wikipedia

    en.wikipedia.org/wiki/Rotational_energy

    As the Earth has a sidereal rotation period of 23.93 hours, it has an angular velocity of 7.29 × 10 −5 rad·s −1. [2] The Earth has a moment of inertia, I = 8.04 × 10 37 kg·m 2. [3] Therefore, it has a rotational kinetic energy of 2.14 × 10 29 J. Part of the Earth's rotational energy can also be tapped using tidal power.