Search results
Results from the WOW.Com Content Network
Electrophilic fluorination is the combination of a carbon-centered nucleophile with an electrophilic source of fluorine to afford organofluorine compounds. Although elemental fluorine and reagents incorporating an oxygen-fluorine bond can be used for this purpose, they have largely been replaced by reagents containing a nitrogen-fluorine bond.
Electrophilic fluorinating reagents could in principle operate by electron transfer pathways or an S N 2 attack at fluorine. This distinction has not been decided. [2] By using a charge-spin separated probe, [3] it was possible to show that the electrophilic fluorination of stilbenes with Selectfluor proceeds through an SET/fluorine atom transfer mechanism.
Starting in the late 1940s, a series of electrophilic fluorinating methodologies were introduced, beginning with CoF 3. Electrochemical fluorination ("electrofluorination") was announced, which Joseph H. Simons had developed in the 1930s to generate highly stable perfluorinated materials compatible with uranium hexafluoride. [15]
As mentioned above, aryl and alkenyl nonaflates are useful as electrophiles in palladium catalyzed cross coupling reactions. Their reactivity generally mirrors that of the more commonly encountered triflate electrophiles, but nonaflates tend to be less prone to hydrolysis to ketones (in the case of alkenyl sulfonates) and phenols (in the case of aryl sulfonates).
The general structure of a silyl enol ether. In organosilicon chemistry, silyl enol ethers are a class of organic compounds that share the common functional group R 3 Si−O−CR=CR 2, composed of an enolate (R 3 C−O−R) bonded to a silane (SiR 4) through its oxygen end and an ethene group (R 2 C=CR 2) as its carbon end.
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; ... Electrophilic fluorination; Electrophilic substitution;
Electrochemical fluorination (ECF), or electrofluorination, is a foundational organofluorine chemistry method for the preparation of fluorocarbon-based organofluorine compounds. [1] The general approach represents an application of electrosynthesis .
Selectfluor, a fluorination agent, and other N–F electrophilic fluorine sources. Bromonium and iodonium species, including py 2 X + (X = Br; X = I: Barluenga's reagent) and Ar 2 I + (diaryliodonium salts) Silver tetrafluoroborate and thallium tetrafluoroborate [6] are convenient halide abstracting agents (although the thallium salt is highly ...