enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain.If is a function from real numbers to real numbers, then is nowhere continuous if for each point there is some > such that for every >, we can find a point such that | | < and | () |.

  3. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    In mathematics, the Weierstrass function, named after its discoverer, Karl Weierstrass, is an example of a real-valued function that is continuous everywhere but differentiable nowhere. It is also an example of a fractal curve .

  4. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to ...

  5. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    In mathematics, the Dirichlet function [1] [2] is the indicator function of the set of rational ... The Dirichlet function is nowhere continuous. Proof.

  6. Pathological (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Pathological_(mathematics)

    A classic example of a pathology is the Weierstrass function, a function that is continuous everywhere but differentiable nowhere. [1] The sum of a differentiable function and the Weierstrass function is again continuous but nowhere differentiable; so there are at least as many such functions as differentiable functions.

  7. Cantor function - Wikipedia

    en.wikipedia.org/wiki/Cantor_function

    The graph of the Cantor function on the unit interval. In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero ...

  8. Conway base 13 function - Wikipedia

    en.wikipedia.org/wiki/Conway_base_13_function

    The Conway base 13 function is a function created by British mathematician John H. Conway as a counterexample to the converse of the intermediate value theorem.In other words, it is a function that satisfies a particular intermediate-value property — on any interval (,), the function takes every value between () and () — but is not continuous.

  9. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    An example of a Darboux function that is nowhere continuous is the Conway base 13 function. Darboux functions are a quite general class of functions. It turns out that any real-valued function ƒ on the real line can be written as the sum of two Darboux functions. [5]