Search results
Results from the WOW.Com Content Network
Seawater consists of fresh water and salt, and the concentration of salt in seawater is called salinity. Salt does not evaporate, thus the precipitation and evaporation of freshwater influences salinity strongly. Changes in the water cycle are therefore strongly visible in surface salinity measurements, which has already been known since the 1930s.
Chemical weathering takes place when water, oxygen, carbon dioxide, and other chemical substances react with rock to change its composition. These reactions convert some of the original primary minerals in the rock to secondary minerals, remove other substances as solutes, and leave the most stable minerals as a chemically unchanged resistate .
This figure describes the geological aspects and processes of the carbonate silicate cycle, within the long-term carbon cycle. The carbonate–silicate geochemical cycle, also known as the inorganic carbon cycle, describes the long-term transformation of silicate rocks to carbonate rocks by weathering and sedimentation, and the transformation of carbonate rocks back into silicate rocks by ...
Geologic processes, such as weathering, erosion, water drainage, and the subduction of the continental plates, all play a role in this recycling of materials. Because geology and chemistry have major roles in the study of this process, the recycling of inorganic matter between living organisms and their environment is called a biogeochemical cycle.
Another approach is to add sodium hydroxide to oceans which is produced by electrolysis of salt water or brine, while eliminating the waste hydrochloric acid by reaction with a volcanic silicate rock such as enstatite, effectively increasing the rate of natural weathering of these rocks to restore ocean pH.
Enhanced weathering, also termed ocean alkalinity enhancement when proposed for carbon credit systems, is a process that aims to accelerate the natural weathering by spreading finely ground silicate rock, such as basalt, onto surfaces which speeds up chemical reactions between rocks, water, and air.
Hydraulic action, most generally, is the ability of moving water (flowing or waves) to dislodge and transport rock particles.This includes a number of specific erosional processes, including abrasion, at facilitated erosion, such as static erosion where water leaches salts and floats off organic material from unconsolidated sediments, and from chemical erosion more often called chemical ...
There is also research on the effects of denudation on karst because only about 30% of chemical weathering from water occurs on the surface. [36] Denudation has a large impact on karst and landscape evolution because the most-rapid changes to landscapes occur when there are changes to subterranean structures. [36]