Search results
Results from the WOW.Com Content Network
In chemistry, the most commonly used unit for molarity is the number of moles per liter, having the unit symbol mol/L or mol/dm 3 in SI units. A solution with a concentration of 1 mol/L is said to be 1 molar, commonly designated as 1 M or 1 M.
In chemistry, molality is a measure of the amount of solute in a solution relative to a given mass of solvent. This contrasts with the definition of molarity which is based on a given volume of solution. A commonly used unit for molality is the moles per kilogram (mol/kg). A solution of concentration 1 mol/kg is also sometimes denoted as 1 molal.
The mole is widely used in chemistry as a convenient way to express amounts of reactants and amounts of products of chemical reactions. For example, the chemical equation 2 H 2 + O 2 → 2 H 2 O can be interpreted to mean that for each 2 mol molecular hydrogen (H 2 ) and 1 mol molecular oxygen (O 2 ) that react, 2 mol of water (H 2 O) form.
There are three common types of chemical reaction where normality is used as a measure of reactive species in solution: In acid-base chemistry, normality is used to express the concentration of hydronium ions (H 3 O +) or hydroxide ions (OH −) in a solution. Here, 1 / f eq is an integer value. Each solute can produce one or more ...
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. [1]
In chemistry, the effective molarity (denoted EM) [1] is defined as the ratio between the first-order rate constant of an intramolecular reaction and the second-order rate constant of the corresponding intermolecular reaction (kinetic effective molarity) [1] [2] or the ratio between the equilibrium constant of an intramolecular reaction and the equilibrium constant of the corresponding ...
Change in volume with increasing ethanol fraction. The molar volume of a substance i is defined as its molar mass divided by its density ρ i 0: , = For an ideal mixture containing N components, the molar volume of the mixture is the weighted sum of the molar volumes of its individual components.
Charge balance is used in the fourth equation, where the left hand side represents the total charge of the cations and the right hand side represents the total charge of the anions: is the molarity of the cation (e.g. sodium, if sodium salt of the acid or sodium hydroxide is used in making the buffer).