enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    For example, if the p-value of a test statistic result is estimated at 0.0596, then there is a probability of 5.96% that we falsely reject H 0. Or, if we say, the statistic is performed at level α, like 0.05, then we allow to falsely reject H 0 at 5%. A significance level α of 0.05 is relatively common, but there is no general rule that fits ...

  3. Type III error - Wikipedia

    en.wikipedia.org/wiki/Type_III_error

    In 1970, L. A. Marascuilo and J. R. Levin proposed a "fourth kind of error" – a "type IV error" – which they defined in a Mosteller-like manner as being the mistake of "the incorrect interpretation of a correctly rejected hypothesis"; which, they suggested, was the equivalent of "a physician's correct diagnosis of an ailment followed by the ...

  4. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...

  5. Error analysis (linguistics) - Wikipedia

    en.wikipedia.org/wiki/Error_analysis_(linguistics)

    Chomsky (1965) made a distinguishing explanation of competence and performance on which, later on, the identification of mistakes and errors will be possible, Chomsky stated that ‘’We thus make a fundamental distinction between competence (the speaker-hearer's knowledge of his language) and performance (the actual use of language in concrete situations)’’ ( 1956, p. 4).

  6. Multiple comparisons problem - Wikipedia

    en.wikipedia.org/wiki/Multiple_comparisons_problem

    For example, if one test is performed at the 5% level and the corresponding null hypothesis is true, there is only a 5% risk of incorrectly rejecting the null hypothesis. However, if 100 tests are each conducted at the 5% level and all corresponding null hypotheses are true, the expected number of incorrect rejections (also known as false ...

  7. Analysis of competing hypotheses - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_competing...

    The structured analysis of competing hypotheses offers analysts an improvement over the limitations of the original ACH. [9] The SACH maximizes the possible hypotheses by allowing the analyst to split one hypothesis into two complex ones. For example, two tested hypotheses could be that Iraq has WMD or Iraq does not have WMD.

  8. Testing hypotheses suggested by the data - Wikipedia

    en.wikipedia.org/wiki/Testing_hypotheses...

    Testing a hypothesis suggested by the data can very easily result in false positives (type I errors). If one looks long enough and in enough different places, eventually data can be found to support any hypothesis. Yet, these positive data do not by themselves constitute evidence that the hypothesis is correct. The negative test data that were ...

  9. Lindley's paradox - Wikipedia

    en.wikipedia.org/wiki/Lindley's_paradox

    Lindley's paradox is a counterintuitive situation in statistics in which the Bayesian and frequentist approaches to a hypothesis testing problem give different results for certain choices of the prior distribution.

  1. Related searches hypothesis examples if then because of error analysis pdf book format excel

    statistical hypothesis error type 1statistical hypothesis examples
    types of errors in statistics