Search results
Results from the WOW.Com Content Network
In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...
With fretted instruments it is very useful to use equal temperament so that the frets align evenly across the strings. In the European music tradition, equal temperament was used for lute and guitar music far earlier than for other instruments, such as musical keyboards. Because of this historical force, twelve-tone equal temperament is now the ...
In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...
Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrating strings are the basis of string instruments such as guitars, cellos, and pianos.
Quantity (common name/s) (Common) symbol/s SI units Dimension Number of wave cycles N: dimensionless dimensionless (Oscillatory) displacement Symbol of any quantity which varies periodically, such as h, x, y (mechanical waves), x, s, η (longitudinal waves) I, V, E, B, H, D (electromagnetism), u, U (luminal waves), ψ, Ψ, Φ (quantum mechanics).
Modelling attempts to replicate laws of physics that govern sound production, and will typically have several parameters, some of which are constants that describe the physical materials and dimensions of the instrument, while others are time-dependent functions describing the player's interaction with the instrument, such as plucking a string, or covering toneholes.
This is a classic demonstration of resonance. A glass has a natural resonance, a frequency at which the glass will vibrate easily. Therefore the glass needs to be moved by the sound wave at that frequency. If the force from the sound wave making the glass vibrate is big enough, the size of the vibration will become so large that the glass ...
c is the speed of the sound waves traveling in the medium; δ is the particle displacement; x is the space variable along the direction of propagation of the sound waves. This equation is valid both for fluids and solids. In fluids, ρc 2 = K (K stands for the bulk modulus);