Search results
Results from the WOW.Com Content Network
If the graph is empty, we go to the final step 5 below. Otherwise, Wernicke's Theorem tells us that S 5 is nonempty. Pop v off S 5 , delete it from the graph, and let v 1 , v 2 , v 3 , v 4 , v 5 be the former neighbors of v in clockwise planar order, where v 1 is the neighbor of degree at most 6.
The works of Ramsey on colorations and more specially the results obtained by Turán in 1941 was at the origin of another branch of graph theory, extremal graph theory. The four color problem remained unsolved for more than a century. In 1969 Heinrich Heesch published a method for solving the problem using computers. [29]
A subdivision of a graph is a graph formed by subdividing its edges into paths of one or more edges. Kuratowski's theorem states that a finite graph G {\displaystyle G} is planar if it is not possible to subdivide the edges of K 5 {\displaystyle K_{5}} or K 3 , 3 {\displaystyle K_{3,3}} , and then possibly add additional edges and vertices, to ...
In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
Graph homomorphism problem [3]: GT52 Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs, forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms ...
Graphs with bounded cyclomatic number, vertex cover number or max leaf number all have bounded treewidth, however it is an open problem to determine the complexity of the metric dimension problem even on graphs of treewidth 2, that is, series–parallel graphs. [9]
Pages in category "Computational problems in graph theory" The following 75 pages are in this category, out of 75 total. This list may not reflect recent changes .