Search results
Results from the WOW.Com Content Network
Dataset of legal contracts with rich expert annotations ~13,000 labels CSV and PDF Natural language processing, QnA 2021 The Atticus Project: Vietnamese Image Captioning Dataset (UIT-ViIC) Vietnamese Image Captioning Dataset 19,250 captions for 3,850 images CSV and PDF Natural language processing, Computer vision 2020 [113] Lam et al.
datasets, mainly in text, images, and audio; web applications ("spaces" and "widgets"), intended for small-scale demos of machine learning applications. There are numerous pre-trained models that support common tasks in different modalities, such as:
Aerial Image Segmentation Dataset 80 high-resolution aerial images with spatial resolution ranging from 0.3 to 1.0. Images manually segmented. 80 Images Aerial Classification, object detection 2013 [160] [161] J. Yuan et al. KIT AIS Data Set Multiple labeled training and evaluation datasets of aerial images of crowds.
363 billion token dataset based on Bloomberg's data sources, plus 345 billion tokens from general purpose datasets [66] Proprietary Trained on financial data from proprietary sources, for financial tasks. PanGu-Σ: March 2023: Huawei: 1085: 329 billion tokens [67] Proprietary OpenAssistant [68] March 2023: LAION: 17: 1.5 trillion tokens Apache 2.0
Stable Diffusion was trained on pairs of images and captions taken from LAION-5B, a publicly available dataset derived from Common Crawl data scraped from the web, where 5 billion image-text pairs were classified based on language and filtered into separate datasets by resolution, a predicted likelihood of containing a watermark, and predicted ...
GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5] GPT-2 was created as a "direct scale-up" of GPT-1 [6] with a ten-fold increase in both its parameter count and the size of its training dataset. [5]
The Pile is an 886.03 GB diverse, open-source dataset of English text created as a training dataset for large language models (LLMs). It was constructed by EleutherAI in 2020 and publicly released on December 31 of that year. [1] [2] It is composed of 22 smaller datasets, including 14 new ones. [1]
That is an "image token". Then, one can interleave text tokens and image tokens. The compound model is then fine-tuned on an image-text dataset. This basic construction can be applied with more sophistication to improve the model. The image encoder may be frozen to improve stability. [80]