Search results
Results from the WOW.Com Content Network
These groups are characterized by i) an n-fold proper rotation axis C n; ii) n 2-fold proper rotation axes C 2 normal to C n; iii) a mirror plane σ h normal to C n and containing the C 2 s. The D 1 h group is the same as the C 2 v group in the pyramidal groups section.
That is, D i in a sense generates the one-parameter group of translations parallel to the x i-axis. These groups commute with each other, and therefore the infinitesimal generators do also; the Lie bracket [D i, D j] = 0. is this property's reflection. In other words, the Lie derivative of one coordinate with respect to another is zero.
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
In a given switching class of graphs of a regular two-graph, let Γ x be the unique graph having x as an isolated vertex (this always exists, just take any graph in the class and switch the open neighborhood of x) without the vertex x. That is, the two-graph is the extension of Γ x by x. In the first example above of a regular two-graph, Γ x ...
On the other hand, reflection groups are concrete, in the sense that each of its elements is the composite of finitely many geometric reflections about linear hyperplanes in some euclidean space. Technically, a reflection group is a subgroup of a linear group (or various generalizations) generated by orthogonal matrices of determinant -1.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
dihedral groups D 1, D 2, D 3, D 4, ..., where D n (of order 2n) consists of the rotations in C n together with reflections in n axes that pass through the fixed point. C 1 is the trivial group containing only the identity operation, which occurs when the figure is asymmetric, for example the letter "F".