Search results
Results from the WOW.Com Content Network
As for fractions, the simplest form is considered that in which the numbers in the ratio are the smallest possible integers. Thus, the ratio 40:60 is equivalent in meaning to the ratio 2:3, the latter being obtained from the former by dividing both quantities by 20. Mathematically, we write 40:60 = 2:3, or equivalently 40:60∷2:3.
These spirals can be approximated by quarter-circles that grow by the golden ratio, [59] or their approximations generated from Fibonacci numbers, [60] often depicted inscribed within a spiraling pattern of squares growing in the same ratio. The exact logarithmic spiral form of the golden spiral can be described by the polar equation with
Sexagesimal, also known as base 60, [1] is a numeral system with sixty as its base.It originated with the ancient Sumerians in the 3rd millennium BC, was passed down to the ancient Babylonians, and is still used—in a modified form—for measuring time, angles, and geographic coordinates.
In mathematics, the supersilver ratio is a geometrical proportion close to 75/34. Its true value is the real solution of the equation x 3 = 2x 2 + 1. The name supersilver ratio results from analogy with the silver ratio, the positive solution of the equation x 2 = 2x + 1, and the supergolden ratio.
This can be verified using Binet's formula. For example, the initial values 3 and 2 generate the sequence 3, 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, ... . The ratio of consecutive elements in this sequence shows the same convergence towards the golden ratio.
Two functions and () are proportional if their ratio () is a constant function. If several pairs of variables share the same direct proportionality constant, the equation expressing the equality of these ratios is called a proportion , e.g., a / b = x / y = ⋯ = k (for details see Ratio ).
For example, one proof notes that if could be represented as a ratio of integers, then it would have in particular the fully reduced representation a / b where a and b are the smallest possible; but given that a / b equals so does 2b − a / a − b (since cross-multiplying this with a / b shows that they are equal).
For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio.