enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle, and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.

  3. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Given a triangle with sides of length a, b, and c, if a 2 + b 2 = c 2, then the angle between sides a and b is a right angle. For any three positive real numbers a , b , and c such that a 2 + b 2 = c 2 , there exists a triangle with sides a , b and c as a consequence of the converse of the triangle inequality .

  4. Delaunay triangulation - Wikipedia

    en.wikipedia.org/wiki/Delaunay_triangulation

    The Euclidean minimum spanning tree of a set of points is a subset of the Delaunay triangulation of the same points, [22] and this can be exploited to compute it efficiently. For modelling terrain or other objects given a point cloud, the Delaunay triangulation gives a nice set of triangles to use as polygons in the model. In particular, the ...

  5. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    with equality holding if and only if the triangle is equilateral. [20] [21]: 657 Other upper bounds on the area T are given by [22]: p.290 + + and + +, both again holding if and only if the triangle is equilateral.

  6. Nine-point circle - Wikipedia

    en.wikipedia.org/wiki/Nine-point_circle

    If an orthocentric system of four points A, B, C, H is given, then the four triangles formed by any combination of three distinct points of that system all share the same nine-point circle. This is a consequence of symmetry: the sides of one triangle adjacent to a vertex that is an orthocenter to another triangle are segments from that second ...

  7. Polygon triangulation - Wikipedia

    en.wikipedia.org/wiki/Polygon_triangulation

    This number is given by the 5th Catalan number. It is trivial to triangulate any convex polygon in linear time into a fan triangulation, by adding diagonals from one vertex to all other non-nearest neighbor vertices. The total number of ways to triangulate a convex n-gon by non-intersecting diagonals is the (n−2)nd Catalan number, which equals

  8. No-three-in-line problem - Wikipedia

    en.wikipedia.org/wiki/No-three-in-line_problem

    A set of 20 points in a 10 × 10 grid, with no three points in a line. The no-three-in-line problem in discrete geometry asks how many points can be placed in the grid so that no three points lie on the same line. The problem concerns lines of all slopes, not only those aligned with the grid.

  9. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...