Search results
Results from the WOW.Com Content Network
Solvation is the process of reorganizing solvent and solute molecules into solvation complexes and involves bond formation, hydrogen bonding, and van der Waals forces. Solvation of a solute by water is called hydration.
In chemistry, solvent effects are the influence of a solvent on chemical reactivity or molecular associations. Solvents can have an effect on solubility , stability and reaction rates and choosing the appropriate solvent allows for thermodynamic and kinetic control over a chemical reaction.
A solvation shell or solvation sheath is the solvent interface of any chemical compound or biomolecule that constitutes the solute in a solution. When the solvent is water it is called a hydration shell or hydration sphere .
Implicit solvation models may be augmented with a term that accounts for the hydrophobic effect. The most popular way to do this is by taking the solvent accessible surface area (SASA) as a proxy of the extent of the hydrophobic effect. Most authors place the extent of this effect between 5 and 45 cal/(Å 2 mol). [26]
Forming solvent–solute attractions , in solvation. The value of the enthalpy of solvation is the sum of these individual steps: = +. Dissolving ammonium nitrate in water is endothermic. The energy released by the solvation of the ammonium ions and nitrate ions is less than the energy absorbed in breaking up the ammonium nitrate ionic lattice ...
The solvatochromic effect is the way the spectrum of a substance (the solute) varies when the substance is dissolved in a variety of solvents. In this context, the dielectric constant and hydrogen bonding capacity are the most important properties of the solvent.
COSMO is a dielectric continuum model [1] [3] [4] [5] (a.k.a. continuum solvation model). These models can be used in computational chemistry to model solvation effects. COSMO has become a popular method of these solvation models in recent years.
Additionally, the trade-off between solvation and the cation–π effect results in a rearrangement of the order of interaction strength for a series of cations. While in the gas phase the most densely charged cations have the strongest cation–π interaction, these ions also have a high desolvation penalty.