enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The real part of every nontrivial zero of the Riemann zeta function is 1/2. The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of ⁠ 1 / 2 ⁠. A proof or disproof of this would have far-reaching implications in number theory, especially for the distribution of prime ...

  3. Gradient discretisation method - Wikipedia

    en.wikipedia.org/wiki/Gradient_discretisation_method

    In numerical mathematics, the gradient discretisation method (GDM) is a framework which contains classical and recent numerical schemes for diffusion problems of various kinds: linear or non-linear, steady-state or time-dependent. The schemes may be conforming or non-conforming, and may rely on very general polygonal or polyhedral meshes (or ...

  4. Finite-difference time-domain method - Wikipedia

    en.wikipedia.org/wiki/Finite-difference_time...

    Partial chronology of FDTD techniques and applications for Maxwell's equations. [5]year event 1928: Courant, Friedrichs, and Lewy (CFL) publish seminal paper with the discovery of conditional stability of explicit time-dependent finite difference schemes, as well as the classic FD scheme for solving second-order wave equation in 1-D and 2-D. [6]

  5. Z-transform - Wikipedia

    en.wikipedia.org/wiki/Z-transform

    In mathematics and signal processing, the Z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex valued frequency-domain (the z-domain or z-plane) representation. [1] [2] It can be considered a discrete-time equivalent of the Laplace transform (the s-domain or s-plane). [3]

  6. Galerkin method - Wikipedia

    en.wikipedia.org/wiki/Galerkin_method

    In mathematics, in the area of numerical analysis, Galerkin methods are a family of methods for converting a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions.

  7. Digital filter - Wikipedia

    en.wikipedia.org/wiki/Digital_filter

    A general finite impulse response filter with n stages, each with an independent delay, d i, and amplification gain, a i.. In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-time signal to reduce or enhance certain aspects of that signal.

  8. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  9. Burgers' equation - Wikipedia

    en.wikipedia.org/wiki/Burgers'_equation

    Burgers' equation or Bateman–Burgers equation is a fundamental partial differential equation and convection–diffusion equation [1] occurring in various areas of applied mathematics, such as fluid mechanics, [2] nonlinear acoustics, [3] gas dynamics, and traffic flow. [4]