Search results
Results from the WOW.Com Content Network
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.
Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting ionizing particles and radiation. This decay, or loss of energy, results in an atom of one type (called the parent nuclide ) transforming to an atom of a different type (called the daughter nuclide ).
In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements. Radioactive isotopes do not usually decay directly to stable isotopes, but rather into another radioisotope. The isotope produced by this radioactive emission then decays into another ...
The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.
Potassium-40 undergoes four different types of radioactive decay, including all three main types of beta decay: electron emission (β −) to 40 Ca with a decay energy of 1.31 MeV at 89.6% probability, positron emission (β + to 40 Ar at 0.001% probability, [1] electron capture (EC) to 40 Ar * followed by a gamma decay emitting a photon [Note 1 ...
Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product , with a mass number that is reduced by four and an atomic number that is reduced by two.
Many of these in theory could decay through spontaneous fission, alpha decay, double beta decay, etc. with a very long half-life, but no radioactive decay has yet been observed. Thus, the number of stable nuclides is subject to change if some of these 251 are determined to be very long-lived radioactive nuclides in the future.
Beta decay: beta particle is emitted from an atomic nucleus Compton scattering: scattering of a photon by a charged particle Neutrino-less double beta decay: If neutrinos are Majorana fermions (that is, their own antiparticle), Neutrino-less double beta decay is possible. Several experiments are searching for this. Pair production and annihilation