enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  3. Complete graph - Wikipedia

    en.wikipedia.org/wiki/Complete_graph

    The complement graph of a complete graph is an empty graph. If the edges of a complete graph are each given an orientation, the resulting directed graph is called a tournament. K n can be decomposed into n trees T i such that T i has i vertices. [6] Ringel's conjecture asks if the complete graph K 2n+1 can be decomposed into copies of any tree ...

  4. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    As complete graphs are Hamiltonian, all graphs whose closure is complete are Hamiltonian, which is the content of the following earlier theorems by Dirac and Ore. Dirac's Theorem (1952) — A simple graph with n vertices ( n ≥ 3 {\displaystyle n\geq 3} ) is Hamiltonian if every vertex has degree n 2 {\displaystyle {\tfrac {n}{2}}} or greater.

  5. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    A graph is planar if it contains as a subdivision neither the complete bipartite graph K 3,3 nor the complete graph K 5. Another problem in subdivision containment is the Kelmans–Seymour conjecture: Every 5-vertex-connected graph that is not planar contains a subdivision of the 5-vertex complete graph K 5.

  6. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    The complement graph ¯ of a simple graph G is another graph on the same vertex set as G, with an edge for each two vertices that are not adjacent in G. complete 1. A complete graph is one in which every two vertices are adjacent: all edges that could exist are present. A complete graph with n vertices is often denoted K n.

  7. Bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Bipartite_graph

    A complete bipartite graph with m = 5 and n = 3 The Heawood graph is bipartite.. In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in .

  8. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    A complete bipartite graph is a graph whose vertices can be partitioned into two subsets V1 and V2 such that no edge has both endpoints in the same subset, and every possible edge that could connect vertices in different subsets is part of the graph. That is, it is a bipartite graph (V1, V2, E) such that for every two vertices v1 ∈ V1 and v2 ...

  9. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. [1] The degree of a vertex is denoted or . The maximum degree of a graph is denoted by , and is the maximum of 's vertices' degrees.