Search results
Results from the WOW.Com Content Network
The free Euler equations are conservative, in the sense they are equivalent to a conservation equation: + =, or simply in Einstein notation: + =, where the conservation quantity in this case is a vector, and is a flux matrix. This can be simply proved.
In mass transfer, the sieving coefficient is a measure of equilibration between the concentrations of two mass transfer streams. It is defined as the mean pre- and post-contact concentration of the mass receiving stream divided by the pre- and post-contact concentration of the mass donating stream.
With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.
Euler's proof of the zeta product formula contains a version of the sieve of Eratosthenes in which each composite number is eliminated exactly once. [9] The same sieve was rediscovered and observed to take linear time by Gries & Misra (1978). [19] It, too, starts with a list of numbers from 2 to n in order. On each step the first element is ...
Euler's first axiom or law (law of balance of linear momentum or balance of forces) states that in an inertial frame the time rate of change of linear momentum p of an arbitrary portion of a continuous body is equal to the total applied force F acting on that portion, and it is expressed as
Euler's laws of motion expressed scientific laws of Galileo and Newton in terms of points in reference frames and coordinate systems making them useful for calculation when the statement of a problem or example is slightly changed from the original. [3] Newton–Euler equations express the dynamics of a rigid body. Euler has been credited with ...
In mathematics, an Euler–Cauchy equation, or Cauchy–Euler equation, or simply Euler's equation, is a linear homogeneous ordinary differential equation with variable coefficients. It is sometimes referred to as an equidimensional equation. Because of its particularly simple equidimensional structure, the differential equation can be solved ...
One assumes then that () can be written as = + ()where () is a density, meaning a multiplicative function such that =, <and is an approximation of () and () is some remainder term.