enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. SNi - Wikipedia

    en.wikipedia.org/wiki/SNi

    When the solvent is also a nucleophile such as dioxane two successive S N 2 reactions take place and the stereochemistry is again retention. With standard S N 1 reaction conditions the reaction outcome is retention via a competing S N i mechanism and not racemization and with pyridine added the result is again inversion. [5] [3]

  3. SN1 reaction - Wikipedia

    en.wikipedia.org/wiki/SN1_reaction

    As the SSA rate law indicates, under these conditions there is a fractional (between zeroth and first order) dependence on [H 2 O], while there is a negative fractional order dependence on [Br –]. Thus, S N 1 reactions are often observed to slow down when an exogenous source of the leaving group (in this case, bromide) is added to the ...

  4. Sigmatropic reaction - Wikipedia

    en.wikipedia.org/wiki/Sigmatropic_reaction

    For example, the following hydrogen atom migration is of order [1,5], attained by counting counterclockwise through the π system, rather than the [1,3] order designation through the ring CH 2 group that would mistakenly result if counted clockwise. As a general approach, one can simply draw the transition state of the reaction.

  5. Substitution reaction - Wikipedia

    en.wikipedia.org/wiki/Substitution_reaction

    A more detailed explanation of this can be found in the main SN1 reaction page. S N 2 reaction mechanism. The S N 2 mechanism has just one step. The attack of the reagent and the expulsion of the leaving group happen simultaneously. This mechanism always results in inversion of configuration.

  6. Walden inversion - Wikipedia

    en.wikipedia.org/wiki/Walden_inversion

    In the Walden inversion, the backside attack by the nucleophile in an S N 2 reaction gives rise to a product whose configuration is opposite to the reactant. Therefore, during S N 2 reaction, 100% inversion of product takes place. This is known as Walden inversion. It was first observed by chemist Paul Walden in 1896.

  7. Molecular Structure of Nucleic Acids: A Structure for ...

    en.wikipedia.org/wiki/Molecular_Structure_of...

    The two base-pair complementary chains of the DNA molecule allow replication of the genetic instructions. The "specific pairing" is a key feature of the Watson and Crick model of DNA, the pairing of nucleotide subunits. [5] In DNA, the amount of guanine is equal to cytosine and the amount of adenine is equal to thymine. The A:T and C:G pairs ...

  8. Inverted repeat - Wikipedia

    en.wikipedia.org/wiki/Inverted_repeat

    The instability results from the tendency of inverted repeats to fold into hairpin- or cruciform-like DNA structures. These special structures can hinder or confuse DNA replication and other genomic activities. [7] Thus, inverted repeats lead to special configurations in both RNA and DNA that can ultimately cause mutations and disease. [9]

  9. Darzens reaction - Wikipedia

    en.wikipedia.org/wiki/Darzens_reaction

    The most likely result is due to chemical kinetics: whichever product is easier and faster to form will be the major product of this reaction. The subsequent S N 2 reaction step proceeds with stereochemical inversion, so the cis or trans form of the epoxide is controlled by the kinetics of an intermediate step.