enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elbow method (clustering) - Wikipedia

    en.wikipedia.org/wiki/Elbow_method_(clustering)

    The elbow method is considered both subjective and unreliable. In many practical applications, the choice of an "elbow" is highly ambiguous as the plot does not contain a sharp elbow. [ 2 ] This can even hold in cases where all other methods for determining the number of clusters in a data set (as mentioned in that article) agree on the number ...

  3. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    It is used in natural language processing and information retrieval (IR). It disregards word order (and thus most of syntax or grammar) but captures multiplicity. The bag-of-words model is commonly used in methods of document classification where, for example, the (frequency of) occurrence of each word is used as a feature for training a ...

  4. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Here are some of commonly used methods: Elbow method (clustering): This method involves plotting the explained variation as a function of the number of clusters, and picking the elbow of the curve as the number of clusters to use. [27] However, the notion of an "elbow" is not well-defined and this is known to be unreliable. [28]

  5. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    Computer vision researchers have developed several learning methods to leverage the BoW model for image related tasks, such as object categorization. These methods can roughly be divided into two categories, unsupervised and supervised models. For multiple label categorization problem, the confusion matrix can be used as an evaluation metric.

  6. Evidence lower bound - Wikipedia

    en.wikipedia.org/wiki/Evidence_lower_bound

    This is a problem in the calculus of variations, thus it is called the variational method. Since there are not many explicitly parametrized distribution families (all the classical distribution families, such as the normal distribution, the Gumbel distribution, etc, are far too simplistic to model the true distribution), we consider implicitly ...

  7. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]

  8. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    Classification of malware codes such as computer viruses, computer worms, trojans, ransomware and spywares with the usage of machine learning techniques, is inspired by the document categorization problem. [63] Ensemble learning systems have shown a proper efficacy in this area. [64] [65]

  9. Variational Bayesian methods - Wikipedia

    en.wikipedia.org/wiki/Variational_Bayesian_methods

    Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...