enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Furthermore, let n be a natural number, and suppose P(m) is true for all natural numbers m less than n + 1. Then if P(n + 1) is false n + 1 is in S, thus being a minimal element in S, a contradiction. Thus P(n + 1) is true. Therefore, by the complete induction principle, P(n) holds for all natural numbers n; so S is empty, a contradiction. Q.E.D.

  3. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    (i) For n = 1, 2n − 1 = 2(1) − 1 = 1, and 1 is odd, since it leaves a remainder of 1 when divided by 2. Thus P(1) is true. (ii) For any n, if 2n − 1 is odd (P(n)), then (2n − 1) + 2 must also be odd, because adding 2 to an odd number results in an odd number. But (2n − 1) + 2 = 2n + 1 = 2(n+1) − 1, so 2(n+1) − 1 is odd (P(n+1 ...

  4. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    The Fermat numbers satisfy the following recurrence relations: = + = + for n1, = + = for n2.Each of these relations can be proved by mathematical induction.From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor greater than 1.

  5. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    We prove commutativity (a + b = b + a) by applying induction on the natural number b. First we prove the base cases b = 0 and b = S(0) = 1 (i.e. we prove that 0 and 1 commute with everything). The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a.

  6. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    First, 2 is prime. Then, by strong induction, assume this is true for all numbers greater than 1 and less than n. If n is prime, there is nothing more to prove. Otherwise, there are integers a and b, where n = a b, and 1 < a ≤ b < n. By the induction hypothesis, a = p 1 p 2 ⋅⋅⋅ p j and b = q 1 q 2 ⋅⋅⋅ q k are products of primes.

  7. Hockey-stick identity - Wikipedia

    en.wikipedia.org/wiki/Hockey-stick_identity

    2.3.1 Proof 1. 2.3.2 Proof 2. 3 See also. ... by the partial sum formula for geometric series, ... This identity can be proven by mathematical induction on ...

  8. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let f {\displaystyle f} and g {\displaystyle g} be n {\displaystyle n} -times differentiable functions. The base case when n = 1 {\displaystyle n=1} claims that: ( f g ) ′ = f ′ g + f g ′ , {\displaystyle (fg)'=f'g+fg',} which is the usual product rule and is known ...

  9. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Fermat sent the letters in which he mentioned the case in which n = 3 in 1636, 1640 and 1657. [31] Euler sent a letter to Goldbach on 4 August 1753 in which claimed to have a proof of the case in which n = 3. [32] Euler had a complete and pure elementary proof in 1760, but the result was not published. [33] Later, Euler's proof for n = 3 was ...