Search results
Results from the WOW.Com Content Network
Bone tissue is removed by osteoclasts, and then new bone tissue is formed by osteoblasts. Both processes utilize cytokine (TGF-β, IGF) signalling.In osteology, bone remodeling or bone metabolism is a lifelong process where mature bone tissue is removed from the skeleton (a process called bone resorption) and new bone tissue is formed (a process called ossification or new bone formation).
The bone formation portion (σ f) of the bone remodeling period is calculated as follows: [5] = in which MWT refers to the mean wall thickness of the completed bone unit and M f refers to the prevailing mean effective bone appositional rate. In other words, what this formula means is that the bone remodeling period is equivalent to the ...
Timing is important to wound healing. Critically, the timing of wound re-epithelialization can decide the outcome of the healing. [11] If the epithelization of tissue over a denuded area is slow, a scar will form over many weeks, or months; [12] [13] If the epithelization of a wounded area is fast, the healing will result in regeneration.
Bone is broken down by osteoclasts, and rebuilt by osteoblasts, both of which communicate through cytokine (TGF-β, IGF) signalling. Ossification (also called osteogenesis or bone mineralization) in bone remodeling is the process of laying down new bone material by cells named osteoblasts. It is synonymous with bone tissue formation. [1]
At a site of active bone resorption, the osteoclast forms a specialized cell membrane, the "ruffled border", that opposes the surface of the bone tissue. This extensively folded or ruffled border facilitates bone removal by dramatically increasing the cell surface for secretion and uptake of the resorption compartment contents and is a ...
The periosteal cells distal to (at the far end of) the fracture gap develop into osteoblasts, which form woven bone [citation needed] through bone resorption of calcified cartilage and recruitment of bone cells and osteoclasts. [4] The fibroblasts within the granulation tissue develop into chondroblasts which also form hyaline cartilage.
The human liver is particularly known for its ability to regenerate, and is capable of doing so from only one quarter of its tissue, [35] due chiefly to the unipotency of hepatocytes. [36] Resection of liver can induce the proliferation of the remaining hepatocytes until the lost mass is restored, where the intensity of the liver's response is ...
Diameter of canaliculi in human bone is approximately 200 to 900 nm. [1] In bovine tibia diameter of canaliculi was found to vary from 155 to 844 nm (average 426 nm). [ 2 ] In mice humeri it varies from 80 to 710 nm (average 259 nm), while diameter of osteocytic processes varies from 50 to 410 nm (average 104 nm).