enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hugging Face - Wikipedia

    en.wikipedia.org/wiki/Hugging_Face

    The Hugging Face Hub is a platform (centralized web service) for hosting: [19] Git-based code repositories, including discussions and pull requests for projects. models, also with Git-based version control; datasets, mainly in text, images, and audio;

  3. LangChain - Wikipedia

    en.wikipedia.org/wiki/LangChain

    LangChain is a software framework that helps facilitate the integration of large language models (LLMs) into applications. As a language model integration framework, LangChain's use-cases largely overlap with those of language models in general, including document analysis and summarization, chatbots, and code analysis.

  4. BLOOM (language model) - Wikipedia

    en.wikipedia.org/wiki/BLOOM_(language_model)

    BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [ 3 ]

  5. GPT-2 - Wikipedia

    en.wikipedia.org/wiki/GPT-2

    Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAI and the second in their foundational series of GPT models. GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5]

  6. Inside France’s Effort to Shape the Global AI Conversation

    www.aol.com/news/inside-france-effort-shape...

    At the beginning of 2024, the most capable model scored only 2% on a benchmark consisting of real world software engineering problems; by October, a new model achieved 49%; by December, an ...

  7. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.

  8. Retrieval-based Voice Conversion - Wikipedia

    en.wikipedia.org/wiki/Retrieval-Based_Voice...

    Its speed and accuracy have led many to note that its generated voices sound near-indistinguishable from "real life", provided that sufficient computational specifications and resources (e.g., a powerful GPU and ample RAM) are available when running it locally and that a high-quality voice model is used. [2] [3] [4]

  9. XLNet - Wikipedia

    en.wikipedia.org/wiki/XLNet

    The XLNet was an autoregressive Transformer designed as an improvement over BERT, with 340M parameters and trained on 33 billion words.It was released on 19 June, 2019, under the Apache 2.0 license. [1]