Search results
Results from the WOW.Com Content Network
Cholesteryl oleate, a member of the cholesteryl ester family. Cholesteryl esters are a type of dietary lipid and are ester derivatives of cholesterol. The ester bond is formed between the carboxylate group of a fatty acid and the hydroxyl group of cholesterol. Cholesteryl esters have a lower solubility in water due to their increased ...
1071 n/a Ensembl ENSG00000087237 n/a UniProt P11597 n/a RefSeq (mRNA) NM_000078 NM_001286085 n/a RefSeq (protein) NP_000069 NP_001273014 n/a Location (UCSC) Chr 16: 56.96 – 56.98 Mb n/a PubMed search n/a Wikidata View/Edit Human Cholesteryl ester transfer protein (CETP), also called plasma lipid transfer protein, is a plasma protein that facilitates the transport of cholesteryl esters and ...
Esters of carboxylic acids with low molecular weight are commonly used as fragrances and found in essential oils and pheromones. Phosphoesters form the backbone of DNA molecules. Nitrate esters, such as nitroglycerin, are known for their explosive properties, while polyesters are important plastics, with monomers linked by ester moieties.
An ester of a carboxylic acid.R stands for any group (typically hydrogen or organyl) and R ′ stands for any organyl group.. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (R ′). [1]
(The names refer to the fact that each double bond means two fewer hydrogen atoms in the chemical formula. Thus, a saturated fatty acid, having no double bonds, has the maximum number of hydrogen atoms for a given number of carbon atoms – that is, it is "saturated" with hydrogen atoms.) [10] [11]
Molecular structure of 1-monoacylglycerol Molecular structure of 2-monoacylglycerol. Monoglycerides (also: acylglycerols or monoacylglycerols) are a class of glycerides which are composed of a molecule of glycerol linked to a fatty acid via an ester bond. [1]
Protein structures range in size from tens to several thousand amino acids. [2] By physical size, proteins are classified as nanoparticles, between 1–100 nm. Very large protein complexes can be formed from protein subunits. For example, many thousands of actin molecules assemble into a microfilament.
Esterases cleave ester bonds in lipids and phosphatases cleave phosphate groups off molecules. An example of crucial esterase is acetylcholine esterase , which assists in transforming the neuron impulse into the acetate group after the hydrolase breaks the acetylcholine into choline and acetic acid . [ 1 ]