enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear .

  3. ADALINE - Wikipedia

    en.wikipedia.org/wiki/ADALINE

    I.e., its activation function is the sign function. [9] The three-layer network uses memistors. As the sign function is non-differentiable, backpropagation cannot be used to train MADALINE networks. Hence, three different training algorithms have been suggested, called Rule I, Rule II and Rule III.

  4. Artificial neuron - Wikipedia

    en.wikipedia.org/wiki/Artificial_neuron

    Non-monotonic, unbounded, and oscillating activation functions with multiple zeros that outperform sigmoidal and ReLU-like activation functions on many tasks have also been recently explored. The threshold function has inspired building logic gates referred to as threshold logic; applicable to building logic circuits resembling brain processing.

  5. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    A widely used type of composition is the nonlinear weighted sum, where () = (()), where (commonly referred to as the activation function [3]) is some predefined function, such as the hyperbolic tangent, sigmoid function, softmax function, or rectifier function. The important characteristic of the activation function is that it provides a smooth ...

  6. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    A perceptron traditionally used a Heaviside step function as its nonlinear activation function. However, the backpropagation algorithm requires that modern MLPs use continuous activation functions such as sigmoid or ReLU. [8] Multilayer perceptrons form the basis of deep learning, [9] and are applicable across a vast set of diverse domains. [10]

  7. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    If the activation function or the underlying process being modeled by the perceptron is nonlinear, alternative learning algorithms such as the delta rule can be used as long as the activation function is differentiable. Nonetheless, the learning algorithm described in the steps below will often work, even for multilayer perceptrons with ...

  8. AOL Mail

    mail.aol.com/d?reason=invalid_cred

    AOL Mail is free and helps keep you safe. From security to personalization, AOL Mail helps manage your digital life Start for free

  9. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    A wide variety of sigmoid functions including the logistic and hyperbolic tangent functions have been used as the activation function of artificial neurons. Sigmoid curves are also common in statistics as cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic density , the normal density , and Student's ...