Search results
Results from the WOW.Com Content Network
The three axes of rotation in an aircraft. Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw.
The attitude indicator (AI), also known as the gyro horizon or artificial horizon, is a flight instrument that informs the pilot of the aircraft orientation relative to Earth's horizon, and gives an immediate indication of the smallest orientation change. The miniature aircraft and horizon bar mimic the relationship of the aircraft relative to ...
An attitude and heading reference system (AHRS) consists of sensors on three axes that provide attitude information for aircraft, including roll, pitch, and yaw. These are sometimes referred to as MARG (Magnetic, Angular Rate, and Gravity) [ 1 ] sensors and consist of either solid-state or microelectromechanical systems (MEMS) gyroscopes ...
The flight mode of normal law provides five types of protection: pitch attitude, load factor limitations, high speed, high-AOA and bank angle. Flight mode is operational from take-off, until shortly before the aircraft lands, around 100 feet above ground level. It can be lost prematurely as a result of pilot commands or system failures.
The pitch axis (also called transverse or lateral axis), [5] passes through an aircraft from wingtip to wingtip. Rotation about this axis is called pitch . Pitch changes the vertical direction that the aircraft's nose is pointing (a positive pitching motion raises the nose of the aircraft and lowers the tail).
The attitude is described by attitude coordinates, and consists of at least three coordinates. [ 1 ] While from a geometrical point of view the different methods to describe orientations are defined using only some reference frames, in engineering applications it is important also to describe how these frames are attached to the lab and the ...
The flight data computer integrates all of the data such as speed, position, closure, drift, track, desired course, and altitude into a command signal. The command signal is displayed on the attitude indicator in the form of command bars, which show the pitch and roll inputs necessary to achieve the selected targets. [2]
The vehicle's attitude must be controlled during powered atmospheric flight because of its effect on the aerodynamic and propulsive forces. [3] There are other reasons, unrelated to flight dynamics, for controlling the vehicle's attitude in non-powered flight (e.g., thermal control, solar power generation, communications, or astronomical ...