Search results
Results from the WOW.Com Content Network
A thermocline (also known as the thermal layer or the metalimnion in lakes) is a distinct layer based on temperature within a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) with a high gradient of distinct temperature differences associated with depth.
The extent of the ocean surface down into the ocean is influenced by the amount of mixing that takes place between the surface water and the deeper water. This depends on the temperature: in the tropics the warm surface layer of about 100 m is quite stable and does not mix much with deeper water, while near the poles winter cooling and storms makes the surface layer denser and it mixes to ...
Graph showing ocean temperature versus depth on the vertical axis. The graph shows several thermoclines (or thermal layers) based on seasons and latitude. The temperature at zero depth is the sea surface temperature. The ocean temperature plays a crucial role in the global climate system, ocean currents and for marine habitats.
During cooler months, wind shear can contribute to cooling of the water surface. The thermocline is an area within the water column where water temperatures rapidly decrease. [17] The bottom layer is the hypolimnion, which tends to have the coldest water because its depth restricts sunlight from reaching it. [17] In temperate lakes, fall-season ...
The (oceanic) water column is a concept used in oceanography to describe the physical (temperature, salinity, light penetration) and chemical (pH, dissolved oxygen, nutrient salts) characteristics of seawater at different depths for a defined geographical point.
Projected global surface temperature changes relative to 1850–1900, based on CMIP6 multi-model mean changes. The IPCC Sixth Assessment Report defines global mean surface temperature (GMST) as the "estimated global average of near-surface air temperatures over land and sea ice, and sea surface temperature (SST) over ice-free ocean regions, with changes normally expressed as departures from a ...
The ocean is absorbing over 90% of excess heat trapped in the atmosphere, greatly limiting global temperature change but contributing to sea level rise, coral bleaching, and other adverse effects. Link to NASA GISS data access page and direct link to chart data , before being adjusted to be against IPCC baseline temp instead of mid century average.
An ocean current is generated by the forces such as breaking waves, temperature and salinity differences, wind, Coriolis effect, and tides caused by the gravitational pull of celestial bodies. In addition, the physical properties in a pycnocline driven by density gradients also affect the flows and vertical profiles in the ocean .