Search results
Results from the WOW.Com Content Network
It can be proven that: . For a given prime number p, if n is p-perfect and p does not divide n, then pn is (p + 1)-perfect.This implies that an integer n is a 3-perfect number divisible by 2 but not by 4, if and only if n/2 is an odd perfect number, of which none are known.
In English grammar, the pluperfect (e.g. "had written") is now usually called the past perfect, since it combines past tense with perfect aspect. (The same term is sometimes used in relation to the grammar of other languages.) English also has a past perfect progressive (or past perfect continuous) form: "had been writing".
For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28. The first four perfect numbers are 6, 28, 496 and 8128. [2] The sum of proper divisors of a number is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum.
So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4] Euclid proved c. 300 BCE that every prime expressed as M p = 2 p − 1 has a corresponding perfect number M p × (M p +1)/2 = 2 p − 1 × (2 p − 1). For example, the Mersenne prime 2 2 − 1 = 3 leads to the corresponding perfect number 2 2 ...
In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.
Euler ascertained that 2 31 − 1 = 2147483647 is a prime number; and this is the greatest at present known to be such, and, consequently, the last of the above perfect numbers [i.e., 2 30 (2 31 − 1)], which depends upon this, is the greatest perfect number known at present, and probably the greatest that ever will be discovered; for as they ...
Every number of the form 2 m p for a natural number m and an odd prime number p such that p < 2 m+1 is also semiperfect. In particular, every number of the form 2 m (2 m+1 − 1) is semiperfect, and indeed perfect if 2 m+1 − 1 is a Mersenne prime. The smallest odd semiperfect number is 945 (see, e.g., Friedman 1993).
Since 2 × (−3) = −6, the product (−2) × (−3) must equal 6. These rules lead to another (equivalent) rule—the sign of any product a × b depends on the sign of a as follows: if a is positive, then the sign of a × b is the same as the sign of b, and; if a is negative, then the sign of a × b is the opposite of the sign of b.