Search results
Results from the WOW.Com Content Network
The aleph numbers differ from the infinity commonly found in algebra and calculus, in that the alephs measure the sizes of sets, while infinity is commonly defined either as an extreme limit of the real number line (applied to a function or sequence that "diverges to infinity" or "increases without bound"), or as an extreme point of the ...
Positive numbers: Real numbers that are greater than zero. Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal ...
There are no self-descriptive numbers in bases 2, 3 or 6. In bases 7 and greater, there is exactly one self-descriptive number: () + + +, which has b−4 instances of the digit 0, two instances of the digit 1, one instance of the digit 2, one instance of digit b – 4, and no instances of any other digits. The following table lists some self ...
6174 is a 7-smooth number, i.e. none of its prime factors are greater than 7. 6174 can be written as the sum of the first three powers of 18: 18 3 + 18 2 + 18 1 = 5832 + 324 + 18 = 6174, and coincidentally, 6 + 1 + 7 + 4 = 18. The sum of squares of the prime factors of 6174 is a square: 2 2 + 3 2 + 3 2 + 7 2 + 7 2 + 7 2 = 4 + 9 + 9 + 49 + 49 ...
Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is ...
Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as the last digit of any even number is 0, 2, 4, 6, or 8.
In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11).
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.