Search results
Results from the WOW.Com Content Network
A plane containing a cross-section of the solid may be referred to as a cutting plane. The shape of the cross-section of a solid may depend upon the orientation of the cutting plane to the solid. For instance, while all the cross-sections of a ball are disks, [2] the cross-sections of a cube depend on how the cutting plane is related to the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The two points tracing the cycloids are therefore at equal heights. The line through them is therefore horizontal (i.e. parallel to the two lines on which the circle rolls). Consequently each horizontal cross-section of the circle has the same length as the corresponding horizontal cross-section of the region bounded by the two arcs of cycloids.
In arithmetic geometry, the Cox–Zucker machine is an algorithm created by David A. Cox and Steven Zucker.This algorithm determines whether a given set of sections [further explanation needed] provides a basis (up to torsion) for the Mordell–Weil group of an elliptic surface E → S, where S is isomorphic to the projective line.
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
Thus, the cross-section of a circular cylinder perpendicular to the axis of the cylinder is a disk, not a circle (which is the boundary of that disk). Some of this confusion is probably due to the long standing abuse of notation found in elementary geometry where, for example, a circle could mean either a disk or the boundary of that disk ...
In mathematics, obstruction theory is a name given to two different mathematical theories, both of which yield cohomological invariants.. In the original work of Stiefel and Whitney, characteristic classes were defined as obstructions to the existence of certain fields of linear independent vectors.
A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahedron, and a 4-dimensional cross-polytope is a 16-cell. Its facets are simplexes of the previous dimension, while the cross-polytope's vertex figure is another cross-polytope from the previous dimension.