Search results
Results from the WOW.Com Content Network
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
He regarded the increment of particle positions in time in a one-dimensional (x) space (with the coordinates chosen so that the origin lies at the initial position of the particle) as a random variable with some probability density function (i.e., () is the probability density for a jump of magnitude , i.e., the probability density of the ...
The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane, = = ^ the following general results apply to the particle.
A solid is a material that can support a substantial amount of shearing force over a given time scale during a natural or industrial process or action. This is what distinguishes solids from fluids, because fluids also support normal forces which are those forces that are directed perpendicular to the material plane across from which they act and normal stress is the normal force per unit area ...
This reduces the parametric equations of motion of the particle to a Cartesian relationship of speed versus position. This relation is useful when time is unknown. We also know that Δ r = ∫ v d t {\textstyle \Delta r=\int v\,{\text{d}}t} or Δ r {\displaystyle \Delta r} is the area under a velocity–time graph.
The equation of motion for a particle of constant mass m is Newton's second law of 1687, in modern vector notation =, where a is its acceleration and F the resultant force acting on it. Where the mass is varying, the equation needs to be generalised to take the time derivative of the momentum.
Defining equation (physical chemistry) List of electromagnetism equations; List of equations in classical mechanics; List of equations in quantum mechanics; List of equations in wave theory; List of photonics equations; List of relativistic equations; Relativistic wave equations
The equation arises not by analyzing the individual positions and momenta of each particle in the fluid but rather by considering a probability distribution for the position and momentum of a typical particle—that is, the probability that the particle occupies a given very small region of space (mathematically the volume element) centered at ...