enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function is not Riemann-integrable on any segment of despite being bounded because the set of its discontinuity points is not negligible (for the Lebesgue measure). The Dirichlet function provides a counterexample showing that the monotone convergence theorem is not true in the context of the Riemann integral.

  3. Dirichlet L-function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_L-function

    The Dirichlet L-function L(s, χ) = 1 − 3 −s + 5 −s − 7 −s + ⋅⋅⋅ (sometimes given the special name Dirichlet beta function), with trivial zeros at the negative odd integers. Let χ be a primitive character modulo q, with q > 1. There are no zeros of L(s, χ) with Re(s) > 1. For Re(s) < 0, there are zeros at certain negative ...

  4. Pathological (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Pathological_(mathematics)

    The Dirichlet function, which is the indicator function for rationals, is a bounded function that is not Riemann integrable. The Cantor function is a monotonic continuous surjective function that maps [ 0 , 1 ] {\displaystyle [0,1]} onto [ 0 , 1 ] {\displaystyle [0,1]} , but has zero derivative almost everywhere .

  5. Dirichlet kernel - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_kernel

    The convolution of D n (x) with any function f of period 2 π is the nth-degree Fourier series approximation to f, i.e., we have () = () = = ^ (), where ^ = is the k th Fourier coefficient of f. This implies that in order to study convergence of Fourier series it is enough to study properties of the Dirichlet kernel.

  6. List of things named after Peter Gustav Lejeune Dirichlet

    en.wikipedia.org/wiki/List_of_things_named_after...

    Dirichlet algebra; Dirichlet beta function; Dirichlet boundary condition (differential equations) Neumann–Dirichlet method; Dirichlet characters (number theory, specifically zeta and L-functions. 1831) Dirichlet conditions (Fourier series) Dirichlet convolution (number theory and arithmetic functions) Dirichlet density (number theory ...

  7. Dirichlet series - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_series

    The most famous example of a Dirichlet series is = =,whose analytic continuation to (apart from a simple pole at =) is the Riemann zeta function.. Provided that f is real-valued at all natural numbers n, the respective real and imaginary parts of the Dirichlet series F have known formulas where we write +:

  8. Dirichlet's principle - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_principle

    The name "Dirichlet's principle" is due to Bernhard Riemann, who applied it in the study of complex analytic functions. [1]Riemann (and others such as Carl Friedrich Gauss and Peter Gustav Lejeune Dirichlet) knew that Dirichlet's integral is bounded below, which establishes the existence of an infimum; however, he took for granted the existence of a function that attains the minimum.

  9. Special values of L-functions - Wikipedia

    en.wikipedia.org/wiki/Special_values_of_L-functions

    In mathematics, the study of special values of L-functions is a subfield of number theory devoted to generalising formulae such as the Leibniz formula for π, namely + + =, by the recognition that expression on the left-hand side is also L ( 1 ) {\displaystyle L(1)} where L ( s ) {\displaystyle L(s)} is the Dirichlet L -function for the field ...

  1. Related searches dirichlet function by libretexts in spring loaded glass jars in nyc subway

    dirichlet l functiondirichlet kernel functions
    dirichlet function examplesdirichlet kernel
    dirichlet function in math