Search results
Results from the WOW.Com Content Network
Angular resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution.
Sparrow's resolution limit is nearly equivalent to the theoretical diffraction limit of resolution, the wavelength of light divided by the aperture diameter, and about 20% smaller than the Rayleigh limit. For example, in a 200 mm (eight-inch) telescope, Rayleigh's resolution limit is 0.69 arc seconds, Sparrow's resolution limit is 0.54 arc seconds.
Also common in the microscopy literature is a formula for resolution that treats the above-mentioned concerns about contrast differently. [2] The resolution predicted by this formula is proportional to the Rayleigh-based formula, differing by about 20%. For estimating theoretical resolution, it may be adequate.
A USAF 1951 resolution chart in PDF format is provided by Yoshihiko Takinami. This chart should be printed such that the side of the square of the 1st element of the group -2 should be 10 mm long. USAF 1951 Resolution Target Further explanations and examples; Koren 2003: Norman Koren's updated resolution chart better suited for computer analysis
The observation of sub-wavelength structures with microscopes is difficult because of the Abbe diffraction limit.Ernst Abbe found in 1873, [2] and expressed as a formula in 1882, [3] that light with wavelength , traveling in a medium with refractive index and converging to a spot with half-angle will have a minimum resolvable distance of
The Large Binocular Telescope at the Mount Graham International Observatory in Arizona uses two curved mirrors to gather light. An optical telescope gathers and focuses light mainly from the visible part of the electromagnetic spectrum, to create a magnified image for direct visual inspection, to make a photograph, or to collect data through electronic image sensors.
The Rayleigh criterion for barely resolving two objects that are point sources of light, such as stars seen through a telescope, is that the center of the Airy disk for the first object occurs at the first minimum of the Airy disk of the second. This means that the angular resolution of a diffraction-limited system is given by the same formulae.
Angular resolution § The Rayleigh criterion, optical angular resolution; Taylor–Couette flow § Rayleigh's criterion, instability criterion in Taylor–Couette flow; Rayleigh roughness criterion, surface roughness criterion in optics; Rayleigh criterion (thermo-acoustic instability), criterion for thermo-acoustic instability; Rayleigh–Kuo ...