Search results
Results from the WOW.Com Content Network
The geometric distribution is the only memoryless discrete probability distribution. [4] It is the discrete version of the same property found in the exponential distribution . [ 1 ] : 228 The property asserts that the number of previously failed trials does not affect the number of future trials needed for a success.
In probability theory and statistics, the hypergeometric distribution is a discrete probability distribution that describes the probability of successes (random draws for which the object drawn has a specified feature) in draws, without replacement, from a finite population of size that contains exactly objects with that feature, wherein each draw is either a success or a failure.
Integral geometry sprang from the principle that the mathematically natural probability models are those that are invariant under certain transformation groups. This topic emphasises systematic development of formulas for calculating expected values associated with the geometric objects derived from random points, and can in part be viewed as a ...
In probability theory and statistics, the negative hypergeometric distribution describes probabilities for when sampling from a finite population without replacement in which each sample can be classified into two mutually exclusive categories like Pass/Fail or Employed/Unemployed. As random selections are made from the population, each ...
Note that this is the -fold product of the probability generating function of a geometric random variable with parameter on {,,,}. The probability generating function of a Poisson random variable with rate parameter λ {\displaystyle \lambda } is
This probability is given by the integral of this variable's PDF over that range—that is, it is given by the area under the density function but above the horizontal axis and between the lowest and greatest values of the range. The probability density function is nonnegative everywhere, and the area under the entire curve is equal to 1.
In the case when the 3 parameters , and are positive integers, the Beta negative binomial can also be motivated by an urn model - or more specifically a basic Pólya urn model. Consider an urn initially containing α {\displaystyle \alpha } red balls (the stopping color) and β {\displaystyle \beta } blue balls.
The geometric standard deviation is used as a measure of log-normal dispersion analogously to the geometric mean. [3] As the log-transform of a log-normal distribution results in a normal distribution, we see that the geometric standard deviation is the exponentiated value of the standard deviation of the log-transformed values, i.e. = ( ()).