Search results
Results from the WOW.Com Content Network
Fischer esterification or Fischer–Speier esterification is a special type of esterification by refluxing a carboxylic acid and an alcohol in the presence of an acid catalyst. The reaction was first described by Emil Fischer and Arthur Speier in 1895. [ 1 ]
The reaction mechanism of the Mitsunobu reaction is fairly complex. The identity of intermediates and the roles they play has been the subject of debate. Initially, the triphenyl phosphine (2) makes a nucleophilic attack upon diethyl azodicarboxylate (1) producing a betaine intermediate 3, which deprotonates the carboxylic acid (4) to form the ion pair 5.
This reaction is important in the history of organic chemistry because it helped prove the structure of ethers. The general reaction mechanism is as follows: [3] An example is the reaction of sodium ethoxide with chloroethane to form diethyl ether and sodium chloride: C 2 H 5 Cl + C 2 H 5 ONa → C 2 H 5 OC 2 H 5 + NaCl
An ester of a carboxylic acid.R stands for any group (typically hydrogen or organyl) and R ′ stands for any organyl group.. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (R ′). [1]
The Darzens reaction (also known as the Darzens condensation or glycidic ester condensation) is the chemical reaction of a ketone or aldehyde with an α-haloester in the presence of a base to form an α,β-epoxy ester, also called a "glycidic ester". [1] [2] [3] This reaction was discovered by the organic chemist Auguste Georges Darzens in 1904 ...
The conversion of ethanol to ethylene is a fundamental example: [3] [4] CH 3 CH 2 OH → H 2 C=CH 2 + H 2 O. The reaction is accelerated by acid catalysts such as sulfuric acid and certain zeolites. These reactions often proceed via carbocation intermediates as shown for the dehydration of cyclohexanol. [5] Some alcohols are prone to dehydration.
In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H +) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions.
The Yamaguchi esterification is the chemical reaction of an aliphatic carboxylic acid and 2,4,6-trichlorobenzoyl chloride (TCBC, Yamaguchi reagent) to form a mixed anhydride which, upon reaction with an alcohol in the presence of stoichiometric amount of DMAP, produces the desired ester. It was first reported by Masaru Yamaguchi et al. in 1979 ...